Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 17, 2025 May 10, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Rotational Dynamics
We know qualitatively how torque effects rotational motion. Our task now is to generate an equation to calculate this effect. We start be examining the torque on a single particle of mass m, a distance r away from the axis of rotation. For simplicity's sake we shall assume the torque acts perpendicular to the radius of the particle. From our definition of torque we know τ = Fr. Newton's Second Law of translational motion states that F = ma and, substituting in our rotational variable, we see that F = mrα. Putting these relations together:
τ = Fr = (mrα)r = (mr2)α |
Consider a rigid body made up of n particles, each acted upon by a torque. The motion of each particle can be described:
τ1 | = | (m1r12)α | |
τ2 | = | (m2r22)α | |
![]() | |||
τn | = | (mnrn2)α |
![]() ![]() |
I = ![]() |
![]() |
There we have it! We have generated a simple equation relating a torque with rotational acceleration. The only challenging part of this equation is the quantity I. We may see this quantity as equivalent to mass--it defines the proportion between a physical force or torque and the resulting acceleration. Generally, however, I can only be calculated through calculus. We shall explore how to do so in a calculus-based section at the end of this SparkNote, but in general the moment of inertia of a rigid body will be given in any problem you might be asked to answer.
We have now derived the necessary ingredients for a full study of rotational dynamics. Since the methods are the same as in the linear case, we are able to spend less time going over the concepts of rotational dynamics. Thus we will continue our study by quickly running through work and energy in a rotational system, and looking at the relation between rotational and translational motion.
Please wait while we process your payment