Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews December 16, 2023 December 9, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
The brilliant leap made by Heisenberg's quantum mechanics was made possible by a number of precursors. The BKS (Bohr, Kramers, Slater) theory provided the model that had to be disproved. An American scientist named John Slater had proposed the idea of a virtual radiation field that carried no energy but that was continually emitted and absorbed by virtual oscillators in an atom. Bohr and his assistant, Kramers, took this idea to suggest that a quantum jump could be induced by a virtual field without any real energy transference. Such a theory required the abandonment of the sacred laws of energy and momentum conservation, and violated a basic idea of causality, as absorption and emission of energy were no longer necessarily correlated.
Heisenberg himself was skeptical at first, but soon found the theory quite captivating and hoped to connect it with his own work. Back in Göttingen, Born was using a formula, derived by Kramers in connection with the BKS theory, to progress in quantum mechanics. However, not long after, when Heisenberg met Einstein for the first time, he was discouraged by the master's objections to the BKS theory. Einstein refused to accept the abandonment of certain essential principles, and he wrote to Bohr that if they had to be given up, "then I would rather be a shoemaker or an employee in a gambling casino than a physicist."
As Born was to be away in 1924, Bohr arranged for a longer Copenhagen retreat for Heisenberg. Soon, tension grew between Heisenberg and Kramers, mostly due to competition for Bohr's attention and approval. Nevertheless, their research coincided on one point, and Bohr pushed them to write a joint paper on the topic. The paper advanced a quantum theory of dispersion, which treated light as a wave rather than as quanta. The theory made particular use of the virtual oscillators; the point was to show how they correspond to harmonics in classical theory.
Soon afterward, in late 1924 and early 1925, Pauli would once again take on Heisenberg's core model, this time using a relativistic approach. The mass of an object increases with speed according to relativity, and the electrons in Heisenberg's model would be traveling fast enough to require consideration of this factor. But Pauli found no evidence of any mass change, and argued convincingly against Heisenberg's core model. Rather than feeling frustrated, Heisenberg praised Pauli's insight and looked for ways to build from it. Soon after Pauli's discovery, the BKS theory too was being disproved by experimental evidence.
Heisenberg's achievement came at a time when all of his colleagues were working on different tangents, and with no systematic approach to the answers they all desired. Nevertheless, their topics of research often complemented each other in unexpected ways. While Born and his new assistant Pascual Jordan were working on the quantum theory of aperiodic systems, Heisenberg returned to the problem of virtual oscillators in the atom. The amplitude of the oscillations could be broken down to a Fourier series, but what Heisenberg recognized was that this function had continued to use classical relationships. Assuming that the basic Fourier function held true on the quantum level, he then set about reinterpreting the frequencies and amplitude with quantum principles in mind, as he had in formulating the Zeeman principle.
Since the amplitudes of classical motions could be squared to find the intensity of the emitted radiation, Heisenberg determined to find a corresponding multiplication rule for the amplitude of virtual oscillators, which would yield the intensity of the spectral lines that had long given physicists trouble. The multiplication rule that Heisenberg devised looked familiar to Born as he critiqued the paper. What Born recognized was that the rule involved the same principle used in multiplying matrices. Before long Born, Jordan, and Heisenberg wrote the groundbreaking paper that expressed quantum physics in matrices. Their equations satisfied the prior principles of quantum physics while accomplishing the long-sought goal of quantifying the discrete energy states of an atom.
However, while everyone was working on refining the new quantum mechanics, Erwin Schrödinger proposed an alternative method. With his famous wave equation, he approached quantum mechanics from a very different course. He was interested in how matter behaved like waves, as light had been shown to do, and in doing so he completely discarded much of the work that had recently been done in quantum physics. The scientific world was shocked, moreover, when it was proved that Schrödinger's equation yielded equivalent results to matrix mechanics. While the two alternative theories may have been mathematically equivalent, they presented completely different pictures of reality.
The debate was not always cordial. Schrödinger insisted that his portrayal was more easily visualized and declared matrix mechanics superseded, while Heisenberg and his colleagues believed Schrödinger's account to be misleading and insufficient. There is no doubt that many physicists, while appreciating the mathematical advances that Schrödinger's equation entailed, took offense to the abandonment of the achievements on which they had spent so much time and effort. Schrödinger's wave theory was based on a continuous field, while the idea of quantum jumps fleshed out by Bohr, Heisenberg, and many others put forth a discontinuous picture.
The debate continued on with no resolution, and it became clear that a new discovery would have to be advanced. This new discovery came in the form of Heisenberg's uncertainty principle.
Please wait while we process your payment