Converting from Grams to Moles

The gram formula mass of a compound (or element) can be defined as the mass of one mole of the compound. As the definition suggests, it is measured in grams/mole and is found by summing the atomic weights of every atom in the compound. Atomic weights on the periodic table are given in terms of amu (atomic mass units), but, by design, amu correspond to the gram formula mass. In other words, a mole of a 12 amu carbon atom will weigh 12 grams.

The gram formula mass can be used as a conversion factor in stoichiometric calculations through the following equation:

Moles =    

Gram formula mass is also known as GFM. You may also see the term gram molecular mass, abbreviated GMM. This term is often used instead of GFM when the substance is molecular and not ionic. However, only the terminology is different, GMM is used in the same way as GFM. Therefore, I will use the catch- all term GFM in this study guide.

Converting between Volume of a Gas and Moles

The Ideal Gas law, discussed at length in the Sparknote on Gases, provides a handy means of converting between moles and a gas, provided you know certain qualities of that gas. The Ideal Gas Law is PV = nRT, with n representing the number of moles. If we rearrange the equation to solve for n, we get:

n =    

with P representing pressure in atm, V representing volume in liters, T representing temperature in Kelvins, and R the gas constant, which equals .0821 L-atm/mol-K. Given P, V, and T, you can calculate the number of moles of substance in a gas.

In those instances when a problem specifies that the calculations are to be made at STP (Standard Temperature and Pressure; P = 1 atm, T = 273 K)), the problem becomes even simpler. At STP, a mole of gas will always occupy 22.4 L of volume. If you are given a volume of a gas at STP, you can calculate the moles in that gas by calculating the volume you are given as a fraction of 22.4 L. At STP, 11.2 L of a gas will be .5 moles; 89.6 L of gas will be 4 moles.