Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 7, 2025 April 30, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Combined Rotational and Translational Motion
We have studied rotation on its own, and translation on its own, but what happens when the two are combined? In this section we study the case in which an object moves linearly, but in such a manner so that the object's axis of rotation remains unchanged. If the axis of rotation is changed, then our equations of rotation no longer apply. Here, we will only study cases in which our equations of rotation work.
The most familiar example of combined rotational and translational motion is a rolling wheel. While it is rolling, the axis of the wheel remains the axis of rotation, and our equations apply.
One important principle of combined motion is that the kinetic energies of translation and rotation are additive. In other words, we can get the total kinetic energy of a body by simply adding its rotational and translational kinetic energy. We must be careful, however, because we never truly defined translational kinetic energy for a rigid body (we only had a definition for a single particle). We solve this problem by simply using the velocity of the Center of Mass of the object, which provides the velocity of the rigid body. Thus the total kinetic energy of a particle is given by:
K = ![]() ![]() |
This equation can be quite useful. Say a rolling ball ascends a hill until it stops. We can calculate the maximum height the ball will reach by using the above equation and relating total kinetic energy to potential energy.
Many times we will know the velocity of an object, or its angular velocity, but not both. Usually if this is the case the problem is unsolvable. In the special case of rolling without slipping, however, we can generate a solution.
Rolling without slipping is defined as the special case of combined rotational and translational motion in which there is no relative motion between the object and the surface with which it is in contact. Examples of rolling without slipping include a car driving on a dry road and a pool ball rolling across the table. In each case, the surface can apply only static friction, since the object does not move relative to the surface. Also, this frictional force does no work and dissipates no energy. Thus an object rolling without slipping will continue with the same linear and angular velocity, unless acted on by another force.
Please wait while we process your payment