Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews June 17, 2023 June 10, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Problem : Someone on a moving train on the earth measures the speed of a meteor in space to be 5×106 m/s. Someone in outer space measures the speed to be 4×106 m/s. Who is right?
The first postulate says that neither observer is 'right' and that they are both right. Motion is relative, so any measurement made from an inertial reference frame is as good (or bad) as any other; both views have validity from their own points of view. Of course this assumes that one is considering the earth to be an inertial frame; this is roughly true but technically the rotation of the earth and the motion around the sun means than the earth is not an inertial frame (it is accelerating).Problem : Two spaceships are hurtling towards one another at a constant speed of 0.8c. When they are still 10 000 kilometers apart, one spaceship radios the other to warn them of the impending collision. How much time does it take for the radio wave to reach the other ship, as observed by someone on the receiving ship (assume that the spaceships move little in the time taken for the signal to travel between them)?
Despite the relative speed of the spaceship light still travels between them at speed c, according to our second postulate. Thus the time taken is just t = d /v = 10000/3×108 = 3.33×10-5 m/s.Problem : Consider the situation described in Section 1. If the flashes from the sources are observed to occur simultaneously by an observer standing on the ground (at rest relative to the sources), what is the time difference between the events according to an observer on a train speeding past at 0.15c, if that observer measures the distance between the sources to be 1 kilometer?
The distance between the sources is 1000 meters so here we have l = 500m. Then tr =Problem : What if the scenario described in Section 1 is performed with baseballs (which travel at a constant speed b < c) instead of light pulses. Will the observers still disagree?
OA would still see the baseballs arrive simultaneously and conclude that they were thrown simultaneously. OB sees the baseball on the source on the right thrown with speed b - v and the baseball from the source on the left thrown with speed b + v. OB then calculates the speeds relative to the throwers as (b - v) + v = v on the left and (b + v) - v = v on the right. Thus OB too concludes that the baseballs arrive simultaneously. There is no disagreement; this comes about as a consequence of the weird properties of c.Problem : Consider again the scenario described in Section 1. Now consider changing the setup by placing only a single emitter at the center position (where OA was), and having two receivers placed where the sources formerly were. The source emits two signals, one in each direction (that is, one towards each receiver). An observer at rest with respect to the source and receivers concludes that the source emitted its two signals simultaneously. What does an observer traveling to the right at velocity v observe?
This situation is exactly analogous to the one described in Section 1. The only difference is that the light on the left of the center point is now traveling to the left, and the light to the right of the center point is moving to the right. Thus the moving observer concludes that the left- moving light takes a time tl =Please wait while we process your payment