Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews February 3, 2023 January 27, 2023
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
Payment Details
Payment Summary
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Parmenides inspired many philosophers to follow in his footsteps. The movement he founded is called the school of Elea, and its members are referred to as the Eleatics. The school of Elea was the first movement to treat pure reason as the sole criterion of truth. Logical consistency and internal theoretic coherence, rather than any sort of observational evidence, guided their entire search for knowledge. The main Eleatic positions were inherited from Parmenides: (1) there is no genesis or corruption; (2) there is no plurality out of unity; (3) there is no change; (4) it is impossible to speak or think of non-being.
Zeno of Elea was Parmenides' most eminent student and was also probably his lover. He was working at roughly the same time as Anaxagoras and Empedocles, and devoted his career to devising arguments in defense of the doctrine of the Parmenidean Real. In his famous paradoxes he attempted to shows that pluralism (i.e. the idea that there really is a plurality of existing things) runs into even greater absurdities than Parmenides' doctrine. His arguments use the method of reductio ad absurdum, in which he begins with the premise he wants to deny, and then shows that this premise leads to a logical contradiction. Zeno did not view these arguments as paradoxes, since he believed that the premises he was trying to undermine (for instance, the existence of motion) were false. Since we today believe that these premises are true, (i.e. we do believe that there is motion in the world, and we do believe that there is a plurality of existing things) we find his brilliant puzzles slightly disturbing.
Melissus of Samos was the last of the famous Eleatics, writing around 440 B.C. He argued for Parmenides' claims in his own original way, drawing on the distinction between "is" and "seems" and the metaphysical consequences of the former. If something "is" X, he claimed, then it must be X essentially, and so it can never not be X. So, for instance, if something is hot, and does not just seem hot, then it can never stop being hot. Since nothing retains properties indefinitely and through all circumstances, he argues, nothing really is, except the Parmenidean Real.
Please wait while we process your payment