Last updated at Feb. 1, 2020 by Teachoo

Transcript

Example 28 Find the distance between the point P(6, 5, 9) and the plane determined by the points A (3, โ 1, 2), B (5, 2, 4) and C(โ 1, โ 1, 6).The equation of a plane passing through points A(๐ฅ_1, ๐ฆ_1, ๐ง_1) B(๐ฅ_2, ๐ฆ_2, ๐ง_2) and C (๐ฅ_3, ๐ฆ_3, ๐ง_3) is |โ 8(๐โ๐_๐&๐โ๐_๐&๐โ๐_๐@๐_๐โ๐_๐&๐_๐โ๐_๐&๐_๐โ๐_๐@๐_๐โ๐_๐&๐_๐โ๐_๐&๐_๐โ๐_๐ )| = 0 Given, the three points are A(3, โ1, 2) ๐ฅ_1= 3, ๐ฆ_1= โ1, ๐ง_1= 2 B(5, 2, 4) ๐ฅ_2= 5, ๐ฆ_2 = 2, ๐ง_2= 4 C(โ1, โ1, 6) ๐ฅ_3= โ1, ๐ฆ_3= โ1, ๐ง_3= 6 Equation of plane is |โ 8(๐ฅโ3&๐ฆโ(โ1)&๐งโ2@5โ3&2โ(โ1)&4โ2@โ1โ3&โ1โ(โ1)&6โ2)| = 0 |โ 8(๐ฅโ3&๐ฆ+1&๐งโ2@2&3&2@โ4&0&4)| = 0 (x โ 3)[(3ร4)โ(0ร2)] โ (y + 1) [(2ร4)โ(โ4ร2)] + (z โ 2) [(2ร0)โ(โ4ร3)] (x โ 3)[12โ0] โ (y + 1) [8+8] +(๐งโ2) [0+12] = 0 12(x โ 3) โ 16(y + 1) + 12(z โ 2) = 0 3(x โ 3) โ 4(y + 1) + 3(z โ 2) = 0 3x โ 9 โ 4y โ 4 + 3z โ 6 = 0 3x โ 4y + 3z โ 19 = 0 Therefore, equation of plane is 3x โ 4y + 3z = 19 Now, the distance between a point P(๐ฅ_1, ๐ฆ_1, ๐ง_1) and the plane Ax + By + Cz = D is |(๐จ๐_๐ + ๐ฉ๐_๐ + ๐ช๐_๐โ ๐ซ)/โ(๐จ^๐ + ๐ฉ^๐ + ๐ช^๐ )| Given, the point is P(6, 5, 9) So, ๐ฅ_1= 6 , ๐ฆ_1= 5, ๐ง_1= 9 The equation of plane is 3x โ 4y + 3z = 19 Comparing with Ax + By + Cz = D, A = 3, B = โ4, C = 3, D = 19 Now, Distance of the point from the plane = |((3 ร 6) + (โ4 ร 5) + (3 ร 9) โ 19)/โ(3^2 + 4^2 + 3^2 )| =|(18 โ 20 + 27 โ 19)/โ(9 + 16 + 9)| =|6/โ34| = 6/โ34 = 6/โ34 ร โ34/โ34 = (6โ34)/34 = (๐โ๐๐)/๐๐

Examples

Example 1

Example, 2 Important

Example, 3

Example, 4 Important

Example, 5 Important

Example, 6 Important

Example, 7

Example 8

Example, 9 Deleted for CBSE Board 2022 Exams

Example 10 Important Deleted for CBSE Board 2022 Exams

Example 11

Example 12 Important

Example 13 Important

Example 14

Example 15

Example 16 Important

Example 17

Example 18

Example 19 Important

Example 20 Important

Example 21 Important

Example 22 Deleted for CBSE Board 2022 Exams

Example 23 Important Deleted for CBSE Board 2022 Exams

Example 24

Example, 25 Important Deleted for CBSE Board 2022 Exams

Example 26

Example 27 Important

Example 28 Important You are here

Example 29 Important

Example 30 Important

Chapter 11 Class 12 Three Dimensional Geometry (Term 2)

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.